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Finite-Element Analysis of Dielectric
Waveguides with Curved Boundaries

DANIEL WELT AND JON WEBB, MEMBER, IEEE

Abstract —The modes of dielectric waveguides with curved boundaries

are computed efficiently using a curved-sided (isoperametric) second-order

finite element rather than the more usnat triangular element. A novel way
of placing the virtual bmsndery is deseribed. Resnks are obtsdued for

dielectric rod and elliptical waveguides, and compared with earlier results.

The method is used to anafyze a single-mode fiber-optical conpler.

I. INTRODUCTION

T HE ACCURATE ANALYSIS of single-mode dielec-

tric waveguides requires the determination of the first

few propagating modes. For an arbitrarily shaped guide

cross section, numerical methods must be used. This paper

describes a finite-element method using quadratic elements

with curved sides, well suited to dielectric waveguides with

curved boundaries.

The authors who previously developed finite-element

techniques for electromagnetic-wave propagation analysis

[1]-[7] chose standard triangular elements with linear [1],

[3] or high-order interpolation polynomials [2], [5]. Such

elements were well adapted to microwave rectangular

waveguides [1], [2] or integrated optics applications [3]–[5],

[7] but not to optical fibers and related components.

Recently, P. Daly [8] proposed curvilinear elements to

solve propagation problems in elliptical and parabolic

waveguides, but with a method and a choice of elements

limited to these two particular cases.

Our selection of elements with quadratic boundaries has

the following advantages.

● Only one type of element can accurately model

straight or curved dielectric boundaries.

● The match with straight or quadratic boundaries is

perfect.

● The match with circular or elliptical boundaries is

excellent.

As it will be shown in the results given later in Section III,

the quality of the boundary matching will give excellent

accuracy with a relatively small number of elements and a

problem of a size compatible with minicomputer capacities.

II. FINITE-ELEMENT FORMULATION

As proved in [9], and stated in [1]–[4], the solution of the

time-harmonic Maxwell’s equations can be written for each

mode in a variational form as

where

N = number of regions in the x – y plane,

i = index of a region (each region must be homoge-

neous, i.e., (i is constant),

Si = area of a region i (Z: ~S, = S = cross section of the

domain of integration),

(2)

Y = normalized propagation constant = ~c/u,

P = propagation constant,

(Any field component ~ propagating in the + z direction

has a z-t dependence of the form e~fmt-~’l.)

c, /~ ~ = relative permittivity in region i,

co = free-space permittivity,

k:=(:)2(Y2-1) (3)

u = angular frequency of the propagating wave,

a = a normalizing dimension,

c = speed of light in vacuum,

+, = H: = z-component of ~ field in region i,
.

+, .~ El, E: is the z-component of ~-field in region i,
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Fig. 1. A typical quadratic element,

The normalized frequencys is defined as

~=l!f!.
c

(4)

For a given value of y, and a known distribution of the

dielectric material in the waveguide cross section, a pair of

scalar two-dimensional functions {@i, ~i } for each region

and the common value of k: constitutes one eigensolution

of (l).

It is important to note that the usual field-matching

conditions -at the+ inter-region interface (continuity of

tangential E and H fields; continuity of normal d and ~

fields) are automatically satisfied when (1) is solved exactly

(see [9]).

When the value of y is between the minimum and the

maximum of ~, an infinite number of discrete and

real solutions (the propagating modes) exist. Each one

propagates at a different frequency and defines a complete

set of six field components. The transverse components, if

required, may be simply deduced from the longitudinal

components [9].

When the regions i are small enough, it is possible to

approximate the solution with polynomial interpolation

functions-this is the finite-element method. Therefore,

these regions are called “elements.”

In order to be able to model arbitrary curved shapes,

each element has only three sides, defined by three

quadratics and three points, as shown in Fig. 1. Therefore,

six points define the geometry of an element.

The search for continuous functions (~,, ~,) is trans-

formed into the search for discrete values at the six nodes

through the discretization process widely documented in

the finite-element literature [10], [11]. By assuming that @i

and ~, can be interpolated in each element from the

knowledge of the nodal values, the integrations in (1) can

be replaced by the integration of known interpolation

functions [10], which become the weights of the unknown

nodal values. .

In each element i, we can write

+i = ~ ‘j4,j (5)
jzl

j=l
(6)

where

N1=–(l-$–q)(l –2(1–~–q)) (7)

Nz=4$(l–~Lq) (8)

N,= – $(1-2&) (9)

Nd = 4<7 (10)

N5=–q(l–2q) (11)

N6=4q(l–$–q). (12)

$, q are the local coordinates in the reference triangle.

Theoretically, even if the region of integration should be

he entire x – y plane, the fast decay rate of ‘the electromag-

netic field outside the waveguide allows an integration over

a finite domain limited by the so-called” virtual boundary.”

It is also possible to use the symmetry conditions to

reduce the size of the integration area by imposing the

proper boundiary conditions on the axes.

Finally, it may be proved [9], [12] that the final form of

(1) after discretization is an eigenvalue problem

~ [A]{e}+k:[13]{e}=o (13)

where

[A] = large-sparse-indefinite-symmetric matrix,

[B] = large-sparse-positive definite-symmetric matrix,

{/3 } = a vector containing all the nodal values of @i and

*i.

The parameter y is present in the matrices [A] and [1?].

The values k; are the positive eigenvalues corresponding to

the propagating modes. Since [A] is indefinite, negative

eigenvalues exist, but are ignored.

III. TEST RESULTS

A set of computer programs has been written to carry

out a finite-element analysis of dielectric waveguides. Three

examples were selected to demonstrate the most important

characteristics of the method and to validate the software

implementation. The results are given in this section.

A. The Dielectric Rod Example

An infinitely long circular cylinder, with an index c)f

refraction n~, is embedded in a region of index n ~ (nl is
greater than n ~). The analytical solution of this problem

can be found in many references [12].

An example was chosen with nl = 1.50 and n2 = 1.00.

One quarter of the rod and the surrounding medium were

discretized with 50 elements and 129 nodes. It was not

necessary to dliscretize the full plane because of the sym-

metric geometry of the system.

Tables I and II give the numerical results and the

corresponding errors for the normalized frequency s as a

function of the normalized propagation constant y. This

error is below 0.035 percent over the y-range (1.05–1.49)

for the dominant HEII mode. The @(HZ)- and #( E=)-field

components fcm y =1.45 are shown in Fig. 2. The number

denoted NO in Tables I and II indicates an ordering of the

computed positive eigenvalues, starting from the smallest.
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TABLE I
THE DIELECTRIC ROD EXAMPLE: HE,, AND HE, MODES

HE1l
‘E12

●1
a %

Y S (Th. ) No ●2 s (FEM) NO*’
●1

Error Y s (’m.) S ( FEM) Error

1.05 1.290371 1 1.290175 -.015 1.05 3.71919 2 3.72199 +.075

1.10 1.510383 1 1.510468 + .006 1.10 4.02084 2 4.02389 +.076

1.15 1.71591 2 1.71619 +.ol6 1.15 4.36556 3 4.36900 +.079

1.20 1.938383 1 1.938836 +.023 1.20 4.78074 2 4.78424 +.073

1.25 2.20246 1 2.20302 +.026 1.25 5.30594 2 5.30988 +.074

1.30 2.54322 1 2.54397 +.030 1.30 6.01055 2 6.01514 +.076

1.35 3.02859 1 3.02956 +,032 1.35 7.03786 3 7.04330 +.077

1.40 3.83111 1 3.83237 +.033 1.40 8.75663 2 8.76278 +.070

.1.45 5.63521 2 5.63680 +.028 1.45 12.6354 3 12.6440 +.068

1.46 6.36240 2 6.36446 +.032 1.46 14.1989 3 14.2074 +. 060

1.47 7.42959 1 7.43224 +.036 1.47 16.4904 3 16.5036 +.080

1.48 9.22224 1 9.22550 +.035 1.48 20.3352 3 20.3491 +.069

1.49 13.2758 1 13.2804 +.035 1.49 29.0159 3 29.0342 +.063

-1 ----- . . . . . . . . -----
-- r Eivz soluuon wstn w elements arm lZY nodes.

*2 Eigenvalue number.

TABLE II

llm DIELECTRIC ROD Exiwwm: HE21 AND HE2 z MODES

HE21
HE22

——

Y
*1 %

S (Th. ) F@*2 S (FTM) Error Y NO*2
*1 %

S (Th. ) S (FEM) EIrOI

1.05 2.78442 2 2.7533 -1.1 1.05 4.91063 4 4.9377 +0.6

1.10 3.02123 3 3.0108 -0.3 1.10 5.26356 5 5.2954 +0.6

1.15 3.28023 2 3.2749 -0.2 1.15 5.67710 3 5.6962 +0.3

1.20 3.58649 2 3.58901 +0.07 1.20 6.18157 3 6.2177 +0.6

1.25 3.97093 2 3.97471 +0.1 1.25 6.82447 3 6.85S2 +0.5

1.30 4.48556 2 4.49332 40.2 1.30 7.69076 4 7.7297 +0.5

1.35 5.23657 2 5.24896 +0.2 1.35 8.95834 3 9.0030 +0.5

1.40 6.49729 3 6.52200 +0.4 1.40 11.0842 4 11.139 +0.5

1.45 9.35970 2 9.35312 -0.07 1.45 15.8898 4 15.966 +0.5

1.46 10.5172 2 10.5202 +0.03 1.46 17.8287 4 17.911 +0.5

1.47 12.2163 2 12.2295 +0.1 1.47 20.6715 4 20.778 +0.5

1.4s 15.0719 3 15.0915 +0.1 1.48 25.4430 5 25.567 +0.5

1.49 21.5308 3 21.5817 to.2 1.49 36.2206 5 36.479 +0.7

xl ~EM solution ~~ 50 elements and 129 nodes.

*2 Eigenvalue number.

o 1 2.5

(r/a) (r/a)

Fig. 2. Field plots of the fundamental mode (HEII) in a dielectric rod with y = 1.450.
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Fig. 3. The inlzomogeneous optical fiber: Step index model of the parabolic profile.

TABLE III

NUMERICAL RBSULTS FOR THE INHOMOGENBOUS OPTICAL FIBER

—

Y

1.04

1.10

1.14

1.20

1.24

1.30

1.34

1.40

HE1l

●4 *1 %
SCI(RK) SO ( FEMI Error

0.977610 0.976640 -. iOO

1.187251 1,187124 -.011

1.311962 1.31186S -.007

1.510205 1.510257 +.003

1.662580 1.662602 +.001

1.949522 1.949422 -.005

2.208118 2.20804S -.003

2.80 /512 2.807164 -.012

‘E21

*2 %
so(m) *4 SO ( FEM) Error

2.170030 2.164290 -.260

2.389231 2.386839 -.100

2.545459 2.543810 -.065

2.819214 2.817969 -.044

3.043603 3.042554 -.034

3.485835 3.485218 -.018

3.898263 3.895336 -.075

4.885428

‘E31

*3 %
so(m) ●4 So ( FEM) Error

3.20710 3.19167 -.48

3.458954 3.452893 -.180

3.652222 3.649044 -.087

4.003891 4.001578 -.058

4.299130 4.297761 -.032

4.891114 4.890539 -.012

5.447305 -

6.811314 6.807586 -.055

*1 Computed ~ti 62 elements and 159 nodes in 1/4 fiber.

*Z Computed titi 62 elements snd 159 nodes in 1/8 fiber.

*3 Computed ~~ 62 elements and 159 nodes in 1/12 fiber.
*4 ~Wge_Kutta solution computed in double precision.

For the fundamental mode, it is usually 1, except when a the comparison between the results from these two meth-
spurious mode is present (see Section IV-B).

The higher eigenvalues give the normalized frequencies

of some of the higher order modes, but with an accuracy

which falls very quickly because the rate of change of the

field becomes very high and cannot be followed by the

interpolation functions. For the next mode analyzed

(HE12), the accuracy degrades but stays below 0.08 percent

over the y-range (1.05 –1 .49). Other modes exist between

HEII and HEIZ which cannot be found with the set of

boundary conditions (imposed on the two axes of symme-

try) which have been used in this example.

B. The Inhomogeneous Waveguide

The usual inhomogeneous fiber is circularly symmetric

and has a slowly varying index of refraction in the radial

direction (Fig. 3). One method of analysis uses a differen-

tial Runge–Kutta step by step approach [13]. Other

methods can be found in [14]–[16]. Because it is a one-

dimensional problem, the two-dimensional finite-element

method is obviously not required for routine analysis, but

ods constitutes an excellent test.

The step index model shown in Fig. 3 is used to ap-

proximate a parabolic profile and model a finite-cladding

inhomogeneous fiber. Sixty-two elements and 159 noldes

are generated to model the cross section. Table III gives the

results from both methods for three modes and shows an

excellent accuracy. The Runge-Kutta results were cc~m-

puted in double precision, but not the finite-element results

because of the limited memory size of the minicomputer.

At very low frequency, the field covers a large area outside

the waveguide and the number of elements required to

keep the accuracy constant must be greater. But the lower

edge of the spectrum is not usually reached. For a typical
free-space wavelength of 1 pm, a normalized frequency s

equal to 1 corresponds to a normalizing a dimension of

0.16 pm, which is extremely small.

C. The Elliptical Waveguide

The elliptical fiber is described and analyzed with a

different method in [17]. It has been selected for compari-
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Core index nl = 1.460

Cladding index n2 = 1.401

Outside index n3 = 1.343

Cladding ellipticity = O. 7616

Core ellipticity = 0.3800

6 1’ 1.~27 mnax
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Fig. 4. Discretized cross section of the elliptical waveguide.

7

2 34 .5678910 15 20

Fig. 5. Propagation characteristics of the first two modes of the ellipti-
cal fiber.

son and validation purposes, and because it is a truly

two-dimensional problem.

This waveguide is made of three dielectric layers, the last

one being infinitely wide. The two boundaries have a

different ellipticity. (The ellipticity x is defined such that

any point (x, y) of the ellipse satisfied the following re-

lations:

x= Rcosrp, y= XRsin@, and O< 0<27r).

The virtual boundary is given the same ellipticity as the

outer edge of the cladding. Fig. 4 shows one quarter of this

structure.

The important result in this example is the so-called Ay

characteristic curve (Fig. 6), which shows the very small

gap between the propagation characteristics of the two

lowest modes (Fig. 5). These are said to be quasi-degener-

ate and correspond to two different sets of boundary

conditions.

The results from our method and from [17] exhibit a

good agreement with a discretization made of only 46

elements and 119 nodes.

IV. COMPUTATIONAL REMARKS

A. Singularity

A theoretical limit of the formulation previously given in

(1) is the singularity of ~, when y2 = ~,/cO. This can be

seen more explicitly by rewriting (1) as (see [1])

where all the parameters have been previously defined in

(l). When y2 approaches C,/CO, 7, goes to infinity, but the

Hehnholtz equations become the static equation (V~I$i =

V~$i = O) in each element i, and the products occuring in

(11) are undefined.

One example has been studied (which can also be found

in [18]) with a finite cladding fiber having three layers with

a relative index of refraction of 1.53, 1.50, and 1.0, respec-

tively, and a cladding to core dimensional ratio of 5. Only

a few points of the fundamental mode propagation curve

were computed, close to the singular value y =1.50.

Numerical results obtained in single precision show a

noticeable error when Iy – (ci/c ~) I <0.002 and, therefore,

the results obtained inside this interval are not valid. Fig. 7

shows the effect of such a singularity.

B. Spurious Modes

A spurious mode is an eigenvalue-eigenvector pair of

the numerical scheme which does not represent a real

propagating mode in the waveguide. It has been observed

by many authors [5], [7], [19]. Its detection may be very

difficult when many modes have propagation characteris-

tics close to each other. In the present work, spurious

modes were identified by plotting the equipotentials of Hz

or E=, which tend to be smooth for true modes and jagged

for spurious modes (Fig. 8).

C. The Eigenvalue Solver

The eigenvalue solver used to solve (13) used tridi-

agonalization and a Sturm sequence search. Eigenvectors

were computed by inverse iteration. Problems of up to 250

degrees of freedom could be handled on a PERQ mini-

computer, with around ~ Mbyte of memory. A solver
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Fig. 6. Elliptical waveguide example: Difference between the propa-

gation characteristics of the first two modes.
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Fig. 7. Propagation characteristics of the fundamental mode near a

singularity.

Fig. 8. Comparison between a reaJ high-order mode and a spurious
mode. Left: Spurious mode for a dielectric rod. Right: Reaf HE31 mode
for a finite cladding fiber.
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which took account of the sparsity of the matrices would

extend considerably the size of the problem solvabie for a

given amount of memory.

D. The Virtual Boundary

Outside the dielectric waveguide, and if there is no

opaque coating, the electromagnetic field decays exponen-

tially for a theoretically infinite distance. But it is obviously

not possible to discretize this infinitely large area with a

finite number of elements of finite size.

Some authors [4], [7] have used special elements in the

unbounded region with intrinsically decaying interpolation

functions. In this approach, the user has to guess the

decaying factor with some accuracy to keep the result in an

acceptable range. In our case, we use the same type of

element everywhere in a finite region, and set both electric

and magnetic fields to a true zero at a certain distance, on

the so-called virtual boundary.

The determination of this boundary can be done itera-

tively with step by step moves, expecting a convergence of

the eigenvalues for sufficiently large values of the boundary

distance [19]. But this process is very costly in terms of

computer time.

A better approach is to consider an equivalent simple

model (the dielectric rod) for the arbitrarily shaped guide

when it is seen for a relatively large distance. It is then

possible to compute an approximate field decay rate to

obtain the location of the virtual boundary. A separate

program analyzes the dielectric rod with great accuracy.

This method has been used successfully in the different

cases studied in Section III.

The effect of the virtual boundary location on the accu-

racy of the answer has been numerically studied in one

example. It shows an optimum range of values between

which the results are very close to each other, within a

so-called “numerical noise level.” This expression refers to

an apparent random variation of the eigenvalues with small

variations of re. atively irrelevant parameters.

When the boundary is too close, the approximation of

the zero field leads to a fast-growing error. When the

boundary is too far, the elements outside the waveguide

become too large and the interpolation functions do not

follow the fast decay rate.

V. THE MONOMODE OPTICAL COUPLER ANALYSIS

A. Description

The monomode optical coupler analyzed here is made of

two monomode optical fibers stretched and fused together.

As has been shown in [20] and [21], power can be ex-

changed between the two guides with a theoretically 100-

percent efficiency when the cross-section dimension of the

device becomes small enough. The phenomenon involved is

not an evanescent wave coupling as obtained with other

manufacto~ing techniques (e.g., by removing cl Iding

material) but a mode beat effect [21], [9].

The loss of symmetry of the structure leads the
fundamental mode splitting into four distinct mod( with

different propagation characteristics. Therefore, an accu-

t y axis

coupling area

/

1-
Linput core

axis of one fiber

Fig. 9. Coupler geometry.

?
Vlrtua

Bounds

x
Core

Fig. 10. Discretized cross section of one quarter of the coupler.

rate analysis of the device requires the accurate computa-

tion of the propagation characteristics of a complicated

dielectric structure as it is shown in Fig. 9. This is achieved

with the finite-element method.

The four modes correspond to four sets of boundary

conditions which may be imposed on the two geometrical

axes of symmetry (defined as Ox and O-y). (The reduction

of the problem to a single quadrant tid the subsequent

definition of four sets of boimdary conditions is a compu-

tational technique which increases the element density and

the accuracy for a given tist.)

The four sets of boundary conditions are

(ox - axis) (ox - axis)
Ez=+=O Hz=*=@

(Oy-axis) 4 3
Ez=I//=0

(Oy-axis) 2 1
Hz=.+=0

The lowest modes corresponding to these conditions are

also labelled 1 to 4.

The geometry of the coupler is shown in Fig. 9, with a

sample of the discretized cross section (one quadrant)

shown in Fig. 10.
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Fig. 11. Coupler Example 1): Propagation characteristics of the first

four modes.
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Fig. 12. Coupler Example 2): Propagation characteristics of the first

four modes.
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Fig. 13. Field plots of mode 2 in coupler 1 (E, field) above cutoff.

The variation of the dimensions along the z-axis has

been exaggerated on purpose. In fact, the taper is very

gradual, and the coupler can be approximated with a set of

very long guides with a constant cross section. In addition,

we assume that the shape of the coupler is constant along

the z-axis, all the dimensions changing with the same rate

as the whole structure shrinks. Therefore, if the “a-dimen-

sion” is the radius of an individual fiber (the normalized

frequency s being such that s = us/c), the propagation

characteristics of one mode inside the structure at any

location along the longitudinal z-axis can be found simply

by following the “y versus s curve.”

B. Results

Two couplers have been analyzed. The cladding index in

both cases is 1.46, and the core index is 1.506 in the first

example, ancl 1.4687 in the second example. The propa-

gation characteristics of the first four modes are shown in
Figs. 11 and 12. In both cases, the degeneracy of the four

lower modes is very well observed for values of y above the

so-called cladding cutoff, e.g., when y“> 1.46, 1.46 being

the refractive index of the cladding.

This behavior is related to a ch~ge in the field solution

inside the cla~dding which becomes slowly nondecaying. It

is equivalent to a change of the Bessel’ s function type in
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Fig. 14. Field plots of mode 2 in coupler 1 ( .EZ field) below cutoff.

the analysis of a finite cladding fiber [18]. The effect of the

singularity at y =1.46 is avoided by ignoring the points in

the y-range (1.458-1.462).

The contours given in Figs. 13 and 14 associated with

some of the y-values selected previously show the effect of

the degeneracy.

In Fig. 13, the field is concentrated in the core and is

very similar to the field of an isolated fiber as it is shown in

Fig. 2.

The end of the degeneracy is very fast when y falls

below 1.46, and the field fills the cladding. This corre-

sponds to the coupling effect described in [20], when the

superposition of the four nondegenerate modes gives a beat

effect.

As expected, the end of the degeneracy in Example 2

occurs at a higher frequency (see Fig, 12) because the core

index is closer to the cladding index. This gives a smoother

transition than in the previous case. The smaller gap be-

tween the two indices allows the field to spread sooner into

the cladding. At low y, the two examples become similar,

the importance of the core being negligible in the field

distribution.

VI. CONCLUSION

The use of curved-sided (isoparametric) second-order

finite elements has been shown to be an efficient and

accurate means of analyzing dielectric waveguides with

curved boundaries. This type of element is particularly

suited to the study of monomode optical fiber devices.
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