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Finite-Element Analysis of Dielectric
Waveguides with Curved Boundaries

DANIEL WELT AnD JON WEBB, MEMBER, IEEE

Abstract —The modes of dielectric waveguides with curved boundaries
are computed efficiently using a curved-sided (isoparametric) second-order
finite element rather than the more usual triangular element. A novel way
of placing the virtual boundary is described. Results are obtained for
dielectric rod and elliptical waveguides, and compared with earlier results.
The method is used to analyze a single-mode fiber-optical coupler.

I. INTRODUCTION

HE ACCURATE ANALYSIS of single-mode dielec-

tric waveguides requires the determination of the first
few propagating modes. For an arbitrarily shaped guide
cross section, numerical methods must be used. This paper
describes a finite-element method using quadratic elements
with curved sides, well suited to dielectric waveguides with
curved boundaries.

The authors who previously developed finite-element
techniques for electromagnetic-wave propagation analysis
[1]-[7] chose standard triangular elements with linear [1],
[3] or high-order interpolation polynomials [2], [S]. Such
elements were well adapted to microwave rectangular
waveguides [1], [2] or integrated optics applications [3]-[5],
[7] but not to optical fibers and related components.

Recently, P. Daly [8] proposed curvilinear elements to
solve propagation problems in elliptical and parabolic
waveguides, but with a method and a choice of elements
limited to these two particular cases.

Our selection of elements with quadratic boundaries has
the following advantages.

® Only one type of element can accurately model
straight or curved dielectric boundaries.

® The match with straight or quadratic boundaries is
perfect.

® The match with circular or elliptical boundaries is
excellent.

As it will be shown in the results given later in Section III,
the quality of the boundary matching will give excellent
accuracy with a relatively small number of elements and a
problem of a size compatible with minicomputer capacities.
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II. FINITE-ELEMENT FORMULATION

As proved in [9], and stated in [1]-[4], the solution of the
time-harmonic Maxwell’s equations can be written for each
mode in a variational form as

N
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where

N = number of regions in the x—y plane,
i =index of a region (each region must be homoge-
neous, i.e., €; is constant),

S, =area of a region i (L., S, = S = cross section of the
domain of integration),
2
-1
n=—t—— @
]
€0
Y = normalized propagation constant = Bc/w,
B = propagation constant,

(Any field component f propagating in the + z direction
has a z-t dependance of the form e/(“*~#9)
€, /€, = relative permittivity in region i,

€, = free-space permittivity,
wa\?
k= (%) (r*-1) 3
w = angular frequency of the propagating wave,
a = a normalizing dimension,
¢ = speed of light in vacuum,
¢, = H!= z-component of H field in region i,
1 . o .
Y; = ——E], E; is the z-component of E-field in region i,

YNo

1, = free-space inpedance = p, /¢,
1o = free-space permeability,
Vv, =(d/dx,d/dy)= vectorial operator.

¢, and ¢, are functions of the space coordinates (x— y),
x—y being defined as the Cartesian coordinates of the
cross-section plane.
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Element i
(quadratic)

Fig. 1. A typical quadratic element.

The normalized frequency s is defined as
wa

s=— (4)
For a given value of vy, and a known distribution of the
dielectric material in the waveguide cross section, a pair of
scalar two-dimensional functions {¢;,y,} for each region
and the common value of kJ constitutes one eigensolution
of (1).

It is important to note that the usual field-matching
conditions at the_inter-region interface (continuity of
tangential E and H fields; continuity of normal D and B
fields) are automatically satisfied when (1) is solved exactly
(see [9)]).

When the value of y is between the minimum and the
maximum of \¢; /¢, an infinite number of discrete and
real solutions (the propagating modes) exist. Each one
propagates at a different frequency and defines a complete
set of six field components. The transverse components, if
required, may be simply deduced from the longitudinal
components [9].

When the regions i are small enough, it is possible to
approximate the solution with polynomial interpolation
functions—this is the finite-element method. Therefore,
these regions are called “elements.”

In order to be able to model arbitrary curved shapes,
each element has only three sides, defined by three
quadratics and three points, as shown in Fig. 1. Therefore,
six points define the geometry of an element.

The search for continuous functions (¢,,v,) is trans-
formed into the search for discrete values at the six nodes
through the discretization process widely documented in
the finite-element literature [10], [11]. By assuming that ¢,
and ¢, can be interpolated in each element from the
knowledge of the nodal values, the integrations in (1) can
be replaced by the integration of known interpolation
functions [10], which become the weights of the unknown
nodal values.

In each element i, we can write

6

¢; = Z Nj¢lj (5)
Jj=1
6

¢l= Z ]lellij (6)

j=1
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where

Ny=—-(1-¢é-9)Q-2(0-¢—9)) (7)

=4£(1~£-n) (8)
N;=—-§(1-2¢) &)
N,=4én (1‘0)
Ny =—7(1-2n) (1)

=49(1-£—9). (12)

£, m are the local coordinates in the reference triangle.

Theoretically, even if the region of integration should be
he entire x — y plane, the fast decay rate of the electromag-
netic field outside the waveguide allows an integration over
a finite domain limited by the so-called “ virtual boundary.”

It is also possible to use the symmetry conditions to
reduce the size of the integration area by imposing the
proper boundary conditions on the axes.

Finally, it may be proved [9], [12] that the final form of
(1) after discretization is an eigenvalue problem

[4]{6}+ki[B]{6} =0 (13)

where

[A] = large-sparse-indefinite-symmetric matrix,
[B] = large-sparse—positive definite—symmetric matrix,
{8} = a vector containing all the nodal values of ¢; and

.22

The parameter v is present in the matrices [ 4] and [B].
The values k2 are the positive eigenvalues corresponding to
the propagating modes. Since [4] is mdeﬁmte negative
eigenvalues exist, but are ignored.

III. TEest RESULTS

A set of computer programs has been written to carry
out a finite-element analysis of dielectric waveguides. Three
examples were selected to demonstrate the most important
characteristics of the method and to validate the software
implementation. The results are given in this section.

A. The Dielectric Rod Example

An infinitely long circular cylinder, with an index of
refraction n,, is embedded in a region of index n, (n, is
greater than n,). The analytical solution of this problem
can be found in many references [12].

An example was chosen with 7, =1.50 and n, =1.00.
One quarter of the rod and the surrounding medium were
discretized with 50 elements and 129 nodes. It was not
necessary to discretize the full plane because of the sym-
metric geometry of the system.

Tables I and II give the numerical results and the
corresponding errors for the normalized frequency s as a
function of the normalized propagation constant y. This
error is below 0.035 percent over the y-range (1.05-1.49)
for the dominant HE,;; mode. The ¢(H,)- and {(E,)-field
components for y =1.45 are shown in Fig. 2. The number
denoted N, in Tables I and II indicates an ordering of the
computed positive eigenvalues, starting from the smallest.
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TABLEI
THE DIELECTRIC RoD ExampLE: HE,; AND HE,;, MODES
HEn HE1

v |sam " s @m0 eeror v | s w0 s rmm™ Ereor
1.05 | 1.290371 1 1,290175  -.015 { 1.05 { 3,71919 2 3.72199 +,075
1.10 | 1.510383 1  1.510468  +,006 | 1.10 | 4.02084 2 4.02389 +.076
1.15 | 1.71591 2 1.71619 +.016 | 1.15 | 4.36556 3 4.36900 +.079
1.20 | 1.938383 1  1.938836  +.023 | 1.20 | 4.78074 2 4.78424 +.073
1.25 | 2.20246 1 2.20302 +,026 | 1.25 | 5.30594 2 5.30088 +.074
1.30 | 2.54322 1 2.54397 +.030 | 1.30 | 6.01055 2 6.01514 +.076
1.35 | 3.02859 1 3.02956 +,032 | 1,35 [ 7.03786 3 7.04330 +.077
1.40 | 3.83111 1 3.83237 +,033 | 1.40 | 8.75663 2 8.76278 +.070
,1.45 | 5.63521 2 5.63680 +.028 | 1.45 | 12.6354 3 12.6440 +.068
1.46 | 6.36240 2 6.36446 +.032 | 1.46 | 14.1989 3 14,2074 +.060
1.47 | 7.42959 1 7.43224 +.036 | 1.47 | 16.4904 3 16.5036 +.080
1.48 | 9.22224 1 9.22550 +.035 | 1.48 | 20.3352 3 20.3491 +.069
1.49 | 13.2758 1 13.2804 +.035 | 1.49 | 29.0159 3 29.0342 +.063

*I FEM solution with 50 elements and 129 nodes.
*2Figenvalue number.

TABLE II
THE DIELECTRIC RoD ExampLE: HE,; AND HE,, MODES
HE,, HE22

Y S (Th.) No’k2 S (FEM)‘kl Erior Y S (Th.) No*2 S (FEM)*x Erior
1.05 2.78442 2 2.7533 -1.1 1.05 4.91063 4 4.9377 +G.6
1.10 3.02123 3 3.0108 -0.3 1.10 5.26356 5 5.2954 +0.6
1.15 3.28023 2 3.2749 -0.2 1.15 5.67710 3 5.6962 +0.3
1.20 3.58649 2 3.58901 +0.07 1.20 6.18157 3 6.2177 +0.6
1.25 3.97093 2 3.97471 +0.1 7 1.25 6.82447 3 6.8582 +0.5
1.30 4.48556 2 4.49332 +0.2 1.30 7.69076 T g 7.7297 +0.5
1.35 5.23657 2 5.24896 +0.2 1.35 8.95834 3 9.0030 +0.5
1.40 6.49729 3 6.52200 +0.4 1.40 11.0842 4 11.139 +0.5
1.45 9.35970 2 9.35312 -0.07 1.45 15.8898 4 15.966 +0.5
1.46 10.5172 2 10.5202 +0.03 1.46 17.8287 4 17.911 +0.5
1.47 12.2163 2 12.2295 +0.1 1.47 20.6715 4 20.778 +0.5
1.48 15.0719 3 15.0915 +0.1 1.48 25.4430 S 25.567 +0.5
1.49 21.5398 3 21,5817 +0.2 1.49 36,2206 5 36.479 +0.7

* FEM solution with 50 elements and 129 nodes.
*2Eigenvalue number.

2,5 [} -1 2.5
(r/a) (x/a)

Fig. 2. Field plots of the fundamental mode (HEllj in a dielectric rod with y =1.450.
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Fig. 3. The inhomogeneous optical fiber

: Step index model of the parabolic profile.

TABLE IHI
NUMERICAL RESULTS FOR THE INHOMOGENEOUS QPTICAL FIBER
HE, HE,, HE3)
*4 % *4 o _} *a «3 _*
Y So (RK) S0 (FEM) Error So(RK) So (FEM) Error So (RK) So (FEM) Error
1.04 | 0.977610 0.976640 -.100 | 2.170030 2.164290 -.260 | 3.20710 3.19167  -.48
1.10 | 1.187251 1,187124 -,011 | 2,385231 2.386839 ~-.100 | 3.458954  3.452893 ~-.180
1.14 | 1.311962  1.311868 -.007 | 2.545459 2,543810 ~-.065 | 3.652222  3.649044 -,087
1.20 1.510205 1.510257 +.,003 2.819214 2.817969 ~,044 4.003891 4,001578 -.058
1.24 | 1.662580 1.662602 +.001 | 3.043603 3.042554 -.034 | 4.299130 4.297761 =-.032
1.30 ] 1.949522 1.949422 -.005 | 3.485835 3.485218 -.018 | 4.891114 4.890539 -.012
1.34 | 2.208118 2.208048 -.003 | 3.898263 3.895336 -.075 - 5.447305 -
1.40 | 2.80/512 2.807164 ~.012 | 4.885428 - - 6.811314 6.807586 -.055

*1 Computed with 62 elements and 159 nodes in 1/4 fiber.

*2 Computed with 62 elements and 159 nodes in 1/8 fiber.
*3Computed with 62 elements and 159 nodes in 1/12 fiber.
*4Runge-Kutta solution computed in double precision.

For the fundamental mode, it is usually 1, except when a
spurious mode is present (see Section IV-B).

The higher eigenvalues give the normalized frequencies
of some of the higher order modes, but with an accuracy
which falls very quickly because the rate of change of the
field becomes very high and cannot be followed by the
interpolation functions. For the next mode analyzed
(HE,,), the accuracy degrades but stays below 0.08 percent
over the y-range (1.05-1.49). Other modes exist between
HE,, and HE,, which cannot be found with the set of
boundary conditions (imposed on the two axes of symme-
try) which have been used in this example.

B. The Inhomogeneous Waveguide

The usual inhomogeneous fiber is circularly symmetric
and has a slowly varying index of refraction in the radial
direction (Fig. 3). One method of analysis uses a differen-
tial Runge-Kutta step by step approach [13]. Other
methods can be found in [14]-[16]). Because it is a one-
dimensional problem, the two-dimensional finite-element
method is obviously not required for routine analysis, but

the comparison between the results from these two meth-
ods constitutes an excellent test.

The step index model shown in Fig. 3 is used to ap-
proximate a parabolic profile and model a finite-cladding
inhomogeneous fiber. Sixty-two elements and 159 nodes
are generated to model the cross section. Table III gives the
results from both methods for three modes and shows an
excellent accuracy. The Runge-Kutta results were com-
puted in double precision, but not the finite-element results
because of the limited memory size of the minicomputer.
At very low frequency, the field covers a large area outside
the waveguide and the number of elements required to
keep the accuracy constant must be greater. But the lower
edge of the spectrum is not usually reached. For a typical
free-space wavelength of 1 pm, a normalized frequency s
equal to 1 corresponds to a normalizing a dimension of
0.16 pm, which is extremely small.

C. The Elliptical Waveguide

The elliptical fiber is described and analyzed with a
different method in [17]. It has been selected for compari-
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n3
Core index n; = 1.460
Cladding index n, = 1.401
— Outside index n3 = 1,343
R
cladding Cladding ellipticity = 0.7616
n Core ellipticity = 0.3800
cor;:'le
o L 1,427 Rmax
Normalised radius
Fig. 4. Discretized cross section of the elliptical waveguide.
1.470 y IV. COMPUTATIONAL REMARKS
A. Singularity
1.458 4
A theoretical limit of the formulation previously given in
L g (1) is the singglgrity of =, \jvhen vy2=¢,/€,. This can be
seen more explicitly by rewriting (1) as (see [1])
1.434 | N €.
8 Z {/ Tt |:¢1V12¢i + 72( ZL) ¢lvi2¢l:|
i=1\"$ Y
1.4k22 4
- (st +vezet )b as—o o
1.398 where all the parameters have been previously defined in
(1). When y?2 approaches ¢, /¢,, 7, goes to infinity, but the
1.386 4 Helmholtz equations become the static equation (V,qui =
v A, =0) in each element i, and the products occuring in
1.37% - (11) are undefined.
One example has been studied (which can also be found
1.362 in [18]) with a finite cladding fiber having three layers with
a relative index of refraction of 1.53, 1.50, and 1.0, respec-
1.350 — s tively, and a cladding to core dimensional ratio of 5. Only
2 5 4 5 678 510 15 20 a few points of the fundamental mode propagation curve

Fig. 5. Propagation characteristics of the first two modes of the ellipti-
cal fiber.

son and validation purposes, and because it is a truly
two-dimensional problem.

This waveguide is made of three dielectric layers, the last
one being infinitely wide. The two boundaries have a
different ellipticity. (The ellipticity x is defined such that
any point (x, y) of the ellipse satisfied the following re-
lations:

x=Rcos¢, y=xRsin¢,and 0 < ¢ <27).
The virtual boundary is given the same ellipticity as the
outer edge of the cladding. Fig. 4 shows one quarter of this
structure.

The important result in this example is the so-called Ay
characteristic curve (Fig. 6), which shows the very small
gap between the propagation characteristics of the two
lowest modes (Fig. 5). These are said to be quasi-degener-
ate and correspond to two different sets of boundary
conditions.

The results from our method and from [17] exhibit a
good agreement with a discretization made of only 46
elements and 119 nodes.

were computed, close to the singular value y=1.50.
Numerical results obtained in single precision show a
noticeable error when |y — (¢, /¢,)| < 0.002 and, therefore,
the results obtained inside this interval are not valid. Fig. 7
shows the effect of such a singularity.

B. Spurious Modes

A spurious mode is an eigenvalue—eigenvector pair of
the numerical scheme which does not represent a real
propagating mode in the waveguide. It has been observed
by many authors [5], [7], [19]. Its detection may be very
difficult when many modes have propagation characteris-
tics close to each other. In the present work, spurious
modes were identified by plotting the equipotentials of H,
or E,, which tend to be smooth for true modes and jagged
for spurious modes (Fig. 8).

C. The Eigenvalue Solver

The eigenvalue solver used to solve (13) used tridi-
agonalization and a Sturm sequence search. Eigenvectors
were computed by inverse iteration. Problems of up to 250
degrees of freedom could be handled on a PERQ mini-
computer, with around 3 Mbyte of memory. A solver
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From ref., (1n

®

FEM Solution

.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3
. 225 | 1 1 1 1 1 L 1
Fig. 6. Elliptical waveguide example: Difference between the propa-
gation characteristics of the first two modes.
Y
1.51 . . .
1.50 Singularity
1. 49 + 4 s
10 15 20 25 30
Fig. 7. Propagation characteristics of the fundamental mode near a
singularity.
r\>\\ T
\ \ air
air
cladding
core
2.5 1.2
0 1 normalised radius x/a 0 Q.2 normalised radius r/a

Fig. 8. Comparison between a real high-order mode and a spurious
mode. Left: Spurious mode for a dielectric rod. Right: Real HE,; mode
for a finite cladding fiber.

581



582

which took account of the sparsity of the matrices would
extend considerably the size of the problem solvabie for a
given amount of memory.

D. The Virtual Boundary

Outside the dielectric waveguide, and if there is no
opaque coating, the electromagnetic field decays exponen-
tially for a theoretically infinite distance. But it is obviously
not possible to discretize this infinitely large area with a
finite number of elements of finite size.

Some authors [4], [7] have used special elements in the
unbounded region with intrinsically decaying interpolation
functions. In this approach, the user has to guess the
decaying factor with some accuracy to keep the result in an
acceptable range. In our case, we use the same type of
element everywhere in a finite region, and set both electric
and magnetic fields to a true zero at a certain distance, on
the so-called virtual boundary.

The determination of this boundary can be done itera-
tively with step by step moves, expecting a convergence of
the eigenvalues for sufficiently large values of the boundary
distance [19]. But this process is very costly in terms of
computer time.

A better approach is to consider an equivalent simple
model (the dielectric rod) for the arbitrarily shaped guide
when it is seen for a reldtively large distance. It is then
possible to compute an approximate field decay rate to
obtain the location of the virtual boundary. A separate
program analyzes the dielectric rod with great accuracy.
This method has been used successfully in the different
cases studied in Section III.

The effect of the virtual boundary location on the accu-
racy of the answer has been numerically studied in one
example. It shows an optimum range of values between
which the results are very close to each other, within a
so-called “numerical noise level.” This expression refers to
an apparent random variation of the eigenvalues with small
variations of re.atively irrelevant parameters.

When the boundary is too close, the approximation of
the zero field leads to a fast-growing error. When the
boundary is too far, the elements outside the waveguide
become too large and the interpolation functions do not
follow the fast decay rate.

V. THE MONOMODE OPTICAL COUPLER ANALYSIS
A. Description

The monomode optical coupler analyzed here is made of
two monomode optical fibers stretched and fused together.
As has been shown in [20] and [21], power can be ex-
changed between the two guides with a theoretically 100-
percent efficiency when the cross-section dimension of the
device becomes small enough. The phenomenon involved is
not an evanescent wave coupling as obtained with other
manufactoring techniques (e.g., by removing cl lding
material) but a mode beat effect [21], [9].

The loss of symmetry of the structure leads the
fundamental mode splitting into four distinct mode¢ with
different propagation characteristics. Therefore, an accu-
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y axis

output

coupling area

output

cladding

\_—— axis of one fiber

Fig. 9. Coupler geometry.

Virtual [

Boundary\\“\~\‘

Core radius = .2 x Cladding radius

Outside

Cladding

Core
Fig. 10. Discretized cross section of one quarter of the coupler.

rate analysis of the device requires the accurate computa-
tion of the propagation characteristics of a complicated
dielectric structure as it is shown in Fig. 9. This is achieved
with the finite-element method.

The four modes correspond to four sets of boundary
conditions which may be imposed on the two geometrical
axes of symmetry (defined as Ox and 0Oy). (The reduction
of the problem to a single quadrant and the subsequent
definition of four sets of boundary conditions is a compu-
tational technique which increases the element density and
the accuracy for a given cost.)

The four sets of boundary conditions are

(0x — axis) (Ox — axis)
Ez=y=90 Hz=¢=0
(Oy-axis) 4 3
Ez=y=0
(0y-axis) 2 1
Hz=¢=0

The lowest modes corresponding to these conditions are
also labelled 1 to 4. _

The geometry of the coupler is shown in Fig. 9, with a
sample of the discretized cross section (one quadrant)
shown in Fig. 10.
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Fig. 11. Coupler Example 1): Propagation characteristics of the first

four modes.
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Fig. 12. Coupler Example 2): Propagation characteristics of the first
four modes.
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e
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Fig. 13.

The variation of the dimensions along the z-axis has
been exaggerated on purpose. In fact, the taper is very
gradual, and the coupler can be approximated with a set of
very long guides with a constant cross section. In addition,
we assume that the shape of the coupler is constant along
the z-axis, all the dimensions changing with the same rate
as the whole structure shrinks. Therefore, if the “a-dimen-
sion” is the radius of an individual fiber (the normalized
frequency s being such that s = wa/c), the propagation
characteristics of one mode inside the structure at any
location along the longitudinal z-axis can be found simply
by following the “y versus s curve.”

Field plots of mode 2 in coupler 1 (E, field) above cutoff.

B. Results

Two couplers have been analyzed. The cladding index in
both cases is 1.46, and the core index is 1.506 in the first
example, and 1.4687 in the second example. The propa-
gation characteristics of the first four modes are shown in
Figs. 11 and 12. In both cases, the degeneracy of the four
lower modes is very well observed for values of y above the
so-called cladding cutoff, e.g., when y>1.46, 1.46 being
the refractive index of the cladding.

This behavior is related to a change in the field solution
inside the cladding which becomes slowly nondecaying. It
is equivalent to a change of the Bessel’ s function type in
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Fig. 14. Field plots of mode 2 in coupler 1 ( E, field) below cutoff.

the analysis of a finite cladding fiber [18]. The effect of the
singularity at y =1.46 is avoided by ignoring the points in
the y-range (1.458-1.462).

The contours given in Figs. 13 and 14 associated with
some of the y-values selected previously show the effect of
the degeneracy.

In Fig. 13, the field is concentrated in the core and is
very similar to the field of an isolated fiber as it is shown in
Fig. 2.

The end of the degeneracy is very fast when vy falls
below 1.46, and the field fills the cladding. This corre-
sponds to the coupling effect described in [20], when the
superposition of the four nondegenerate modes gives a beat
effect.

As expected, the end of the degeneracy in Example 2
occurs at a higher frequency (see Fig. 12) because the core
index is closer to the cladding index. This gives a smoother
transition than in the previous case. The smaller gap be-
tween the two indices allows the field to spread sooner into
the cladding. At low vy, the two examples become similar,
the importance of the core being negligible in the field
distribution.

VL

The use of curved-sided (isoparametric) second-order
finite elements has been shown to be an efficient and
accurate means of analyzing dielectric waveguides with
curved boundaries. This type of element is particularly
suited to the study of monomode optical fiber devices.

CONCLUSION
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